THE JO L OF 4979
PHYSICAL
CHEMISTRY

2005,109,4979-4982
Published on Web 05/18/2005

Broken Inter-C gp Bonds as the Cause of Magnetism in Polymeric §. A Density Functional
Study Using Gso Dimers

Jordi Ribas-Aririo," Alessandro Curioni;f Wanda Andreoni,* and Juan J. Novoa**8

Departament de Jmica Fsica, Facultat de Qumica, and CERQT, Parc Ci€fit,
Universitat de Barcelona, A Diagonal 647, 08028-Barcelona, Spain, IBM Research,
Zurich Research Laboratory, 8803 &uhlikon, Switzerland, and CEPBA-IBM Research Institute

Receied: February 11, 2005; In Final Form: May 3, 2005

Bond breaking in gg—Cgo dimeric units is believed to play an important role in the onset of magnetism in

2D polymeric Go. On the basis of density-functional theory, the calculations we present here provide further
insight into this mechanism through a quantitative characterization of the bond-breaking processes in the
isolated dumbbell-shaped;g@imer. In particular, the analysis of the calculated potential energy surfaces for

the low-lying singlet and triplet states identifies and locates the€ls crossing point, which is crucial for the
transition to a magnetic state to take place under thermal conditions. These results also suggest a possible
new approach to the production of magnetic polymerig C

Since the discovery of ferromagnetic behavior in 2D rhom- crossing and estimating the energy profile of the transition are
bohedral polymeric g under high-pressure and high-temper- the scope of the investigation we present in this letter.
ature conditiond,a number of diverse experiments have been Specifically, density-functional theory (DFf)calculations were
performed that provide solid support for such an unexpected performed to explore the most relevant regions of the potential
observatior?~7 In particular, experimental evidence has been energy surfaces (PES) of thg, §1, and T; electronic states of
produced that indicates that magnetism is an intrinsic property the dumbbell Gy dimer}!* their stationary points, and the energy

of pristine Gy in this phase: it is not induced by impuritié&$ barriers for dimerization. Our results allow us to speculate on
and the radical centers responsible for it form without damaging a possible scenario for the propagation of the excitation and
the Gso cage’ also lead to suggestions for new methods to produce these

Despite several attempts to explain the onset and subsequenmagnetic nanostructures.
establishment of magnetic order, a complete understanding of The DFT calculations we describe below were performed in
its physical origin still requires further progress. A few the pseudopotential-plane-waves framework of the CPMD
contrasting models have been proposed to describe the mecheodds using the BLYP® approximation for the exchange-
anism generating the radical centers (e.g., the presence oforrelation functional, norm-conservihgiependent pseudopo-

structural defects such as atomic vacarfc@sopen-cage € tentials!” and a cutoff of 55 Ry for the plane-wave expansién.
isomer&1® and the partial breaking of intermolecular bonds, This computational scheme has been extensively applied to the
leading to states of higher spin multiplictéy9. In particular, study of chemical and physical properties of fullerenes and

two of us have recently reported ab initio calculations of the  fy|lerene derivative4? We also report on some results obtained
Ceo dimer, described using an approximate structural model, iy the all-electron scheme of the Gaussian 98 & dsing
studying the bonding in polymericegsolids. It was pointed  prescription for the exchange-correlation functional. Clearly
out that under shortening .of the intermolecular distance from these are intended to give us an idea regarding the dependence
equilibrium one of the two intermolecular k_)onds tends to break (if any) of the results on the specific DFT implementation. The
and that the character of the ground state simultaneously Change%roken-symmetry approa#hwas used to describe the singlet
from singlet (9) to triplet (T,). This naturally led to an appealing  \yave function in regions of the potential energy surface where
proposal for the mechanism responsible for the onset of yhe singlet wave functions are open-shell in nature (whenever
magnetism in the condensed phase. However, now another steyongs are partially or fully broken). The quality of the broken-
for_wanil is mandatory, namely, the identification of the hypoth- ¢y metry DFT approach was tested: an extensive calculation
esized" crossing between theoSand T, potential energy  of the PES of the Selectronic state of two ethylene molecules
surfaces, W.hICh is the necessary condition for the'rupture to (made within the B3LYP/3-21G scheme) showed that the shape
take place in thermally triggered processes. Locating such aanq main features of the PES calculated with the DFT methods
are similar to those obtained with the multiconfiguration
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Figure 2. Geometry of the minimum-energy configurations of the S

T, and T, states. (In T and T, the distribution of a spin density
isosurface is also depicted.) Also represented is the geometry of the
configuration of lowest energy where the &d T, surfaces cross. (d
ando are the parameters that quantify the parallel drift motion of one
Figure 1. Structure of the § S;, Ty, and T states. Ceo fragment with respect to the other.)

_ ) TABLE 1: C g Dimer: Main Characteristics of the PES of
Experimentally, the dumbbell-shaped,@imers result from the &, T, and T, Lowest Electronic Stated

a [2+ 2] cycloaddition of two Gy molecules when either light Ex(theory;

or pressure is applied to pristinesdXrystals?>?® Depending state Emn d d[6:6] E*(exp) thiswork) Ex(theory’) Er
on the experimental conditions, multiple §22] cycloadditions S 0 1616 1614 2930' 29 (sy) a4 (sy) 27

may also take place, giving rise to either 1D chains or 2D 28 (asy) 37 (asy)
polymers?” (So far, no 3D cases have been found.) In each of T, 283 1.605 1.605 1% 13 (sy)
these cycloadditions, two new intermolecularC bonds are T, 19 1.709 1.526 5 (asy) 11

formed that connect the carbon atoms at the f_usion o_f the _six- 2 For each statéEnn, d, andd[6:6] are the energy relative to the S
membered rings ([6:6]) on each fragment. This configuration minimum, the interfragment €C distance, and the [6:6] intrafragment
corresponds to theySinglet ground state depicted in Figure 1. distance (Figures 1 and 2) calculated for the optimized struciris;
Studying the lowest Tand T, triplet states (Figure 1) is critical ~ the dissociation barrier; arte- is the formation energy with respect to
for the present study. Indeed, one can think gfafid T, as the two separate dmonomers in the appropriate state. (See the text.)
having been generated from the Sate after breaking one All energies are in kcal/mol, and all distances, in’Rorezag et al. in

“ " . ref 14.©Wang, Y.; Holden, J. H.; Bi, X.; Eklund, P. @hem. Phys.
double” bond in one of the € cages (such that the two Lett. 1993 217, 3. ¢ Reference 28 Experimental estimate is 34 kcal/

electrons are left in a triplet configuration) and one of the two mg| (ref 28a). The calculated energy of the lowest triplet state for the
intermolecular bonds, respectively. They are different triplet monomer is 35 kcal/mol above the singlet ground state.

states (Figure 2); whereas in €ach Go unit holds one spin,
experimental studi@% showed that in T the spin density is Table 1, we report information on the properties of these states
distributed over only one of two dg molecules, localized on  and some characteristics of the PES that we calculated and
opposite atoms along the equator (a distribution also found in compare our results with those of previous calculations and
the triplet state of & fullerened®). Also, the lowest singlet  especially with available experimental data. Moreover, a
excited state (§ (Figure 1) can be thought of as resulting from convenient representation of the PES is shown in Figure 3,
the homolytic rupture of one interfragment-C bond as for which illustrates the potential energy curves for synchronous
the T, state, to which it is closely related. We found that the (S and T;) and asynchronous §J approaches of the twoeg
PESs of the §and $ states are interconnected, by analogy to molecules as a function of the shortest interfragmentCC
the scenario described by CASSCF calculations for the ethylenedistance (shown as solid lines that connect tkgu@its in Figure
dimer23 From now on, we will refer to the lowest-energy singlet 1). Asynchronous curves corresponding to the’d T, states
PES as § although one has to keep in mind that the electronic have also been computed but are not plotted here, for the sake
structure evolves from¢0 S; when the interfragment €C of clarity. Each point on these curves corresponds to a global
distance is elongated. optimization of the atomic coordinates under the constraint of
After determining the configuration corresponding to the a fixed value for the interfragment -€C distance. In the
global energy minimum for each state, calculations proceededsynchronous curves, the two interfragmentC distances are
by progressively changing the interfragmentC distance. In forced to be the same length and the rest of the geometrical
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150 S TR, AT TN T e . results as a guide, we also searched for such a crossing in the
il —+— Sg-sync - PES of the G dimer, but again we were unable to locate one.
125 | —m— Tp-async The next natural option was to explore the region in which one
r —e— Tysync of the Gy fragments drifts laterally relative to the other. The
= 1001 corresponding rearrangement of the intermolecular interactions
£ I is shown in Figure 2. This reaction is expected to be endothermic
;8_ g and activated (because two-C bonds are broken and just one
SR is created). Note that the electronic structure of the singlet in
,% i this region is that of the diradical; SWe computed the shape
25: of the PES associated with the singlet and triplesiates as a
| function of the interfragment €C distanced and the driftd.
ol Our analysis identifies a crossing region and locates the lowest-
AP Al AN AN energy crossing at= 1.503 A andd = 1.45 A (d[6:6] = 1.570

B Ul AR), 75 kcal/mol above the Sground-state energi-3* More-
He) over, the drift motion along the,SPES from the minimum to

Figure 3. 'Pote_ntial energy curves for the dissociation of the dumbbell the crossing point requires an energy barrier to be overcome,
Ceo—Ceo dimer into two Go fragments. The zero of energy corresponds  yhich we estimate to be 109 kcal/mol. Interestingly, both of
to two isolated @ molecules in their singlet ground state. these energy values are much smaller than that estimated from
experiment for the loss of a;@init from a Go cageé® and are
also smaller than the estimated barrier (125 kcalfhalf a
Stone-Wales rearrangement. Therefore, the creation of magnetic
centers can take place at energies slightly below that needed

and an energy barrier towards the dissociation of the dimer into for cage destruction an_d also below that associated with a
two Ceo fragments. (sdissociates into two & singlets in their ~ cOMPpetitive nondestructive process.

S ground state, whereas and T, both fragment into one & In summary, our investigation of thesg@limers has confirmed
singlet and one £ triplet.) and substantiated the basic steps of the mechanism proposed in
The main features of the curves plotted in Figure 3 can be ref 11 for the onset of ferromagnetic interactions in polymeric

summarized as follows: (1) Thep%nd T, curves cross at  Ceo. According to it, ferromagnetism can be induced when
distances shorter than that of the equilibrium configuration as pressure is applied to the solid, and some of the-Cgo units
expected! (2) The $—T. crossings that these curves seem to transform to a 3-like configuration that remains stable once
present in the region of theyBarrier are merely an artifact of ~ pressure is released. The probability that this magnetic state
the comparison of synchronous and asynchronous curves andindergoes radiative decay is expected to be small because in
do not exist when one examines the curves plotted over the 3Dthe isolated g—Cso dimers the transition from the; minimum
PES. (3) In all states, dimer formation is predicted to be to the $ ground state is spin-forbidden as well as vibrationally
endothermic Er values in Table 1). (4) In theg®nd T; states, forbidden!! Therefore, a scenario emerges in which the presence
the energy minimum is found at close values of both relevant of a sufficient number of g—Cgo units in a T-like configu-
inter- and intramolecular distances, which in turn are almost ration combined with the existence of continuous ferromagnetic
identical; the situation is different and less symmetric for the pathways accounts for the origin of macroscopic ferromagnetic
T state. (5) The barriers towards dissociation differ remarkably. properties. Our results also suggest new possible experimental
A few comments about the above points are instructive: (i) procedures for the creation of ferromagnetic polymesg 8y
The nature of the dimerization process is endotheffhwdjich irradiating a pristine & crystal, one could produce enough long-
is consistent with the fact that milder conditions (2@1) normal lived C60(T) molecules that under pressure may undergo the
pressure) are required for depolymerization to occur than for reaction Go(T) + Cso(S) — Cso—CeoT2), thus generating a
polymerization (800 K, 9 GPa4}. (i) The computed energy  gyfficient number of G—Cao units in Ty-like configurations.
barriers for dissociation agree well with the available experi- ynder mild pressure conditions, the probability that unitsin T
mental_data. (iii) The relatiV(_a order b_etwee_n the_states computedjike configurations are created is expected to be negligible
here differs from that obtained earlier using simple structural pecayse their formation barrier in the dimer is higher than that
model$! rather.than the full-§|zed do—Ceo molecule. required for the formation of the ,Tstate. However, the
_ From a physical point of view, the shape of the DFT curves . opapility that ferromagnetic interactions are triggered by
in Figure 3 tends to confirm the validity of the mechanism photochemical activation from thes&Cgo units in S-like

prrc]).pﬁsgd in reI 11 fqr trl;e gﬁf‘e“ﬁon of mag?ectlic ?otrrr:ents, conformations should be small because in the isolated dimer
which does not require breaxing QOCCag.es'. nhdeed, Y the T, transition is both spin- and vibrationally forbidd&h.
show that the application of pressure to pristing i@duces a

[2 + 2] cycloaddition reaction between adjacerp @olecules
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